Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Chim Acta ; 1221: 340120, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-2287040

ABSTRACT

Early and accurate diagnosis of SARS-CoV-2 was crucial for COVID-19 control and urgently required ultra-sensitive and rapid detection methods. CRISPR-based detection systems have great potential for rapid SARS-CoV-2 detection, but detecting ultra-low viral loads remains technically challenging. Here, we report an ultrasensitive CRISPR/Cas12a-based electrochemical detection system with an electrochemical biosensor, dubbed CRISPR-SPCE, in which the CRISPR ssDNA reporter was immobilized onto a screen-printed carbon electrode. Electrochemical signals are detected due to CRISPR cleavage, giving enhanced detection sensitivity. CRISPR-SPCE enables ultrasensitive SARS-CoV-2 detection, reaching as few as 0.27 copies µL-1. Moreover, CRISPR-SPCE is also highly specific and inexpensive, providing a fast and simple SARS-CoV-2 assay.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Carbon , Electrodes , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
ACS Appl Mater Interfaces ; 14(45): 50534-50542, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2087120

ABSTRACT

The CRISPR-Cas system was developed into a molecular diagnostic tool with high sensitivity, low cost, and high specificity in recent years. Colorimetric assays based on nanozymes offer an attractive point-of-care testing method for their low cost of use and user-friendly operation. Here, a MnO2 nanozyme-mediated CRISPR-Cas12a system was instituted to detect SARS-CoV-2. MnO2 nanorods linked to magnetic beads via a single-stranded DNA (ssDNA) linker used as an oxidase-like nanozyme inducing the color change of 3,3',5,5'-tetramethylbenzidine, which can be distinguished by the naked eye. The detection buffer color will change when the Cas12a is activated by SARS-CoV-2 and indiscriminately cleave the linker ssDNA. The detection limit was 10 copies per microliter and showed no cross-reaction with other coronaviruses. The nanozyme-mediated CRISPR-Cas12a system shows high selectivity and facile operation, with great potential for molecular diagnosis in point-of-care testing applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , CRISPR-Cas Systems/genetics , Manganese Compounds , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Oxides , DNA, Single-Stranded
SELECTION OF CITATIONS
SEARCH DETAIL